АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ НОВЫЙ УНИВЕРСИТЕТ»

Кафедра Информационных технологий и естественнонаучных дисциплин

УТВЕРЖДАЮ

Ректор АНО ВО РосНОУ

_В.А. Зернов

«*<mark>Ду» об* 2017 г</mark>

Программа вступительных испытаний по дисциплине Математика

Настоящая программа составлена на основе образовательного стандарта.

Абитуриент должен:

знать:

• основные математические формулы и понятия;

уметь:

- выполнять действия над числами и числовыми выражениями; преобразовывать буквенные выражения; производить операции над векторами (сложение, умножение на число, скалярное произведение);
- переводить одни единицы измерения величин в другие;
- сравнивать числа и находить их приближенные значения;
- решать уравнения, неравенства, системы (в том числе с параметрами) и исследовать их решения;
- исследовать функции; строить графики функций и множества точек на координатной плоскости, заданные уравнениями и неравенствами;
- применять признаки равенства, подобия фигур и их принадлежности к тому или иному виду;
- пользоваться свойствами чисел, векторов, функций и их графиков, свойствами арифметической и геометрической прогрессий;
- пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения, величины углов, длины, площади, объемы;
- составлять уравнения, неравенства и находить значения величин, исходя из условия задачи.

Знания, соответствующие данной программе, позволят в дальнейшем студенту освоить математические дисциплины, входящие в учебную программу обучения по направлению.

1. Основные понятия

Натуральные числа. Делимость. Простые и составные числа. Наибольший общий делитель и наименьшее общее кратное.

Целые, рациональные и действительные числа. Проценты. Модуль

числа, степень, корень, арифметический корень, логарифм. Синус, косинус, тангенс, котангенс угла. Арксинус, арккосинус, арктангенс, арккотангенс числа.

Числовые и буквенные выражения. Равенства и тождества.

Функция, ее область определения и область значений. Возрастание и убывание, периодичность, четность и нечетность. График функции. Наибольшее и наименьшее значения функции.

Линейная, квадратичная, степенная, показательная логарифмическая, тригонометрические функции.

Уравнение, неравенства, система. Решение уравнения, неравенства, системы. Равносильность.

Арифметическая и геометрическая прогрессии.

Прямая на плоскости. Луч, отрезок, ломаная, угол.

Треугольник. Медиана, биссектриса, высота.

Выпуклый многоугольник. Квадрат, прямоугольник, параллелограмм, ромб, трапеция. Правильный многоугольник. Диагональ.

Окружность и круг. Радиус, хорда, диаметр, касательная, секущая. Дуга окружности и круговой сектор. Центральный и вписанные углы.

Прямая и плоскость в пространстве. Двугранный угол.

Многогранник. Куб, параллелепипед, призма, пирамида.

Цилиндр, конус, шар, сфера.

Равенство и подобие фигур. Симметрия.

Параллельность и перпендикулярность прямых, плоскостей. Скрещивающиеся прямые. Угол между прямыми, плоскостями, прямой и плоскостью.

Касание. Вписанные и описанные фигуры на плоскости и в пространстве. Сечение фигуры плоскостью.

Величина угла. Длина отрезка, окружности и дуги окружности. Площадь многоугольника, круга и кругового сектора. Площадь поверхности и объем многогранника, цилиндра, конуса, шара.

Координатная прямая. Числовые промежутки. Декартовы координаты

на плоскости и в пространстве. Векторы.

2. Алгебра

Признаки делимости на 2, 3, 5, 9, 10.

Свойства числовых неравенств.

Формулы сокращенного умножения.

Свойства линейной функции и ее график.

Формула корней квадратного уравнения. Теорема о разложении квадратного трехчлена на линейные множители. Теорема Виета.

Свойства квадратичной функции и ее график.

Неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Неравенство для суммы двух взаимно обратных чисел.

Формулы общего члена и суммы п первых членов арифметической прогрессии.

Свойства степеней с натуральными и целыми показателями. Свойства арифметических корней п-й степени. Свойства степеней с рациональными показателями.

Свойства степенной функции с целым показателем и ее график.

Свойства показательной функции и ее график.

Основное логарифмическое тождество. Логарифмы произведения, степени, частного. Формула перехода к новому основанию.

Свойства логарифмической функции и ее график.

Основное тригонометрическое тождество. Соотношения между тригонометрическими функциями одного и того же аргумента. Формулы приведения, сложения, двойного и половинного аргумента, суммы и разности тригонометрических функций. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование произведения синусов и косинусов в сумму.

Формулы решений простейших тригонометрических уравнений.

Свойства тригонометрических функций и их графики.

Понятие производной. Производная степенной функции. Правила

дифференцирования. Производные элементарных функций. Геометрический смысл производной.

Возрастание и убывание функций. Экстремумы.

Применение производных к построению графиков функций.

Первообразная. Вычисление простейших интегралов.

Понятие определенного интеграла. Формула Ньютона – Лейбница. Вычисление площадей плоских фигур.

3. Геометрия

Теоремы о параллельных прямых на плоскости.

Свойства вертикальных и смежных углов.

Свойства равнобедренного треугольника.

Признаки равенства треугольников.

Теорема о сумме внутренних углов треугольника. Теорема о внешнем угле треугольника. Свойства средней линии треугольника.

Теорема Фалеса. Признаки подобия треугольников.

Признаки равенства и подобия прямоугольных треугольников. Пропорциональность отрезков в прямоугольном треугольнике. Теорема Пифагора.

Свойство серединного перпендикуляра к отрезку. Свойство биссектрисы угла.

Теоремы о пересечении медиан, пересечении биссектрис и пересечении высот треугольника.

Свойство отрезков, на которые биссектриса треугольника делит противоположную сторону.

Свойство касательной к окружности. Равенство касательных, проведенных из одной точки к окружности. Теоремы о вписанных углах. Теорема об угле, образованном касательной и хордой. Теоремы об угле между двумя пересекающимися хордами и об угле между двумя секущими, выходящими из одной точки. Равенство произведений отрезков двух пересекающихся хорд. Равенство квадрата касательной произведению секущей на ее внешнюю часть.

Свойство четырехугольника, вписанного в окружность. Свойство четырехугольника, описанного около окружности.

Теорема об окружности, вписанной в треугольник. Теорема об окружности, описанной около треугольника.

Теоремы синусов и косинусов для треугольника.

Теорема о сумме внутренних углов выпуклого многоугольника.

Признаки параллелограмма. Свойства параллелограмма.

Свойства средней линии трапеции.

Формула для вычисления расстояния между двумя точками на координатной плоскости. Уравнение окружности.

Теоремы о параллельных прямых в пространстве. Признак параллельности прямой и плоскости. Признак параллельности плоскостей.

Признак перпендикулярности прямой и плоскости. Теорема об общем перпендикуляре к двум скрещивающимся прямым. Признак перпендикулярности плоскостей. Теорема о трех перпендикулярах.

4. Теория вероятностей и статистика

Случайная изменчивость, точность измерений. Случайные события, вероятности и частоты.

Математическое описание случайных явлений. Вероятности элементарных событий. Сложение и умножение вероятностей.

Элементы комбинаторики. Правило умножения. Перестановки. Факториал. Сочетания.

Геометрическая вероятность. Испытания Бернулли.

Случайные величины. Числовые характеристики случайных величин. Математическое ожидание и дисперсия.

Случайные величины в статистике, закон больших чисел.

Критерии оценивания тестовых заданий по математике

Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа. Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас

затруднение, пропустите его. К пропущенным заданиям вы сможете вернуться, если у вас останется время.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

На выполнение экзаменационной работы по математике отводится 2 часа (120 минут).

Верное выполнение каждого задания оценивается в 4 балла. Максимальное количество баллов за всю работу – 100.

Литература

- 1. Алгебра 9 класс. Ю.Н. [Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. 21-е изд. М.: Прсвящение, 2014.
- 2. Алимов Ш.А. Колягин Ю.М. и др. Алгебра и начало математического анализа. Учебник для 10-11 классов. М.:Просвещение, 2016.
- 3. Л.С.Атанасян, В.Ф. Бутузов, и др. Геометрия. Учебник для 7-9 классов. М: Просвещение, 2017.
- 4. Л.С.Атанасян, В.Ф. Бутузов, и др. Геометрия. Учебник для 10 11 классов. М: ОАО Московские учебники, 2010.
- 5. А.В.Погорелов Геометрия. Учебник для 7-9 классов 2-ое изд. М: Просвещение, 2014.
- 6. Ю.Н. Тюрин, А.А. Макаров и др. Теория вероятностей и статистика. М: МЦНМО, 2014.